f(x)

Final exam (take home)

1. Answer questions about each of the following functions, given the graph:

- **f.** On the graph above, draw another function h(x) that has the **same limit** as f(x) as $x \to 0.5^+$, but that is **NOT equal** to f(x) for **ANY** value of x.
- 2. How many different ways can we have a limit that does not exist? Draw below **at least two** functions that show two **different** function behaviors that would produce a limit that does not exist as $x \to \infty$. (If you can think of more than two, draw extra functions for extra credit.)

- **3.** Consider the following functions: $f(x) = 2x^2$, $g(x) = 4x^3$, $h(x) = 6x^2$
 - a. Find $\lim_{x\to 0} \frac{1}{f(x)}$
 - b. Find $\lim_{x\to 0} \frac{f(x)}{g(x)}$
 - c. Find $\lim_{x\to 0} \frac{g(x)}{f(x)}$
 - d. Find $\lim_{x\to 0} \frac{f(x)}{h(x)}$
 - e. Use your answers to a-e above to help you to explain WHY:
 - i. $\frac{0}{0}$ is an indeterminate form
 - ii. $\frac{1}{0}$ is NOT an indeterminate form

4. Consider the function in the graph below:

a. Graph the derivative of this function.

- **b.** Over which intervals of the domain on this graph will the **second** derivative be **positive**?
- **5.** How many different ways can a function fail to be differentiable at a point? Draw below **at least two** functions that show two **different** function behaviors that would produce a derivative that does not exist at x = 2. (If you can think of more than two, draw extra functions for extra credit.)